메뉴 건너뛰기

Sub Promotion

Abstract

  In this paper, the prediction skills of five ensemble methods for temperature and precipitation are discussed by considering 20 yr of simulation results (from 1989 to 2008) for four regional climate models (RCMs) driven by NCEP–Department of Energy and ECMWF Interim Re-Analysis (ERA-Interim) boundary conditions. The simulation domain is the Coordinated Regional Downscaling Experiment (CORDEX) for East Asia, and the number of grid points is 197 × 233 with a 50-km horizontal resolution. Three new performance-based ensemble averaging (PEA) methods are developed in this study using 1) bias, root-mean-square errors (RMSEs) and absolute correlation (PEA_BRC), RMSE and absolute correlation (PEA_RAC), and RMSE and original correlation (PEA_ROC). The other two ensemble methods are equal-weighted averaging (EWA) and multivariate linear regression (Mul_Reg). To derive the weighting coefficients and cross validate the prediction skills of the five ensemble methods, the authors considered 15-yr and 5-yr data, respectively, from the 20-yr simulation data. Among the five ensemble methods, the Mul_Reg (EWA) method shows the best (worst) skill during the training period. The PEA_RAC and PEA_ROC methods show skills that are similar to those of Mul_Reg during the training period. However, the skills and stabilities of Mul_Reg were drastically reduced when this method was applied to the prediction period. But, the skills and stabilities of PEA_RAC were only slightly reduced in this case. As a result, PEA_RAC shows the best skill, irrespective of the seasons and variables, during the prediction period. This result confirms that the new ensemble method developed in this study, PEA_RAC, can be used for the prediction of regional climate.

제목
Oh, S.-G et al. Projection of high resolution climate change for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation. APJAS, 52(2), 171-189  
Suh, M.-S et al, Projections of High Resolution Climate Changes for South Korea Using Multiple-Regional Climate Models Based on Four RCP Scenarios. Part 1: Surface Air Temperature. APJAS, 52(2), 151-169  
Jin, C.-S, D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang and C.-H. Ho, 2015: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX‑East Asia multi‑RCM simulations. Clim Dyn,  
Park, C., S.-K. Min, D. Lee, d.-H. Cha, M.-S. Suh, H.-S. kang, S.-Y. Hong, D.-K. Lee, H.-J. Baek, K.-O. Boo and W.-T. Kwon, 2015: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn, 2015,  
Suh, M.-S. and C. Kim, 2015: Change-Point Analysis of Tropical Night Occurrences for Five Major Cities in Republic of Korea. Advances in Meteorology, 2015, 1-11, doi:10.1155/2015/801981.  
Cho, A-Ra, Y.-Y. Choi and M.-S. Suh, 2015: Improvements of a COMS land surface temperature retrieval algorithm based on the temperature lapse rate and water vapor/aerosol effect, Remote sens., 7, 1777-1797.  
Suh, M.-S. and S.-G. Oh, 2015: Impacts of boundary conditions on the simulation of atmospheric fields using RegCM4 over CORDEX East Asia. Atmos., 6, 783–804.  
Seok-Geun Oh, Myoung-Seok Suh, and Dong-Hyun Cha, 2013: Impact of Boundary Conditions on Precipitation and Temperature Extremes over South Korea in the CORDEX Regional Climate Simulation Using RegCM4, APJAS, 49(4), 497-509,  
Youn-Young Choi, Myoung-Seok Suh and Ki-Hong Park, 2014: Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS, Remote Sens. 2014, 6, 5852-5867; doi:10.3390/rs6065852  
Seok-Geun Oh, Ju-Hee Park, Sang-Hyun Lee, and Myoung-Seok Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios, JGR-Atmosphere, 119, doi:10.1002/ 2013JD020693.  
Cho A.-R. and M.-S. Suh, 2013: Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite (COMS) data, Remote Sens.,5(8), 3951-3970p.  
Ji-Woo Lee, Song-You Hong, Eun-Chul Chang, Myoung-Seok Suh, and Hyun-Suk Kang, 2013: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMS-RMP, Climate Dynamics, soi:10.1007/s00382-013-1841-6.  
A-Ra Cho and Myoung-Seok Suh, 2013, Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatio-temporal continuity, APJAS, 49(4), pp511-525  
Chansoo Kim and Myoung-Seok Suh, 2013: Prospects of using bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea, APJAS, 49(3), 301-311, doi:10.1007/s13143-013-0029-7.  
Ju-Hee Park, Soek-Geun Oh, Myoung-Seok Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain, JGR-Atmosphere, 118, 1-16p, doi:10.1002/jgrd.50159.  
Suh, M.-S., S.-G. Oh, D.-K. Lee, D.-H. Cha, S.-J. Choi, C.-S. Jin, and S.-Y. Hong, 2012, Development of new ensemble methods based on the performance skills of regional climate models over South Korea, J. of Climate,  
Kang, J.-H., M.-S., Suh, K.-O. Hong, and C.-S. Kim, 2011, Development of updateable model output statistics (UMOS) system for air temperature over South Korea, APJAS, 47(2), 199-211. RACS  
Hyo-Sik Eom and Myoung-Seok Suh, 2011, Seasonal and diurnal variations of stability indices and environmental parameters using NCEP FNL data over East Asia, APJAS, 47(2), 181-192. RACS  
Seo, Eun-Kyoung, Guosheng Liu, Myoung-Seok, Suh, and Byoung-Ju Sohn, 2010, The varying response of microwave signatures to different types of over land rainfall found over the Korean Peninsula, DOI:10.1175/2009/JTECHA1364.1,  
Kim, Chansoo, Suh, Myoung-Seok, Hong, Ki-Ok, 2009: Bayesian Changepoint Analysis of the Annual Maximum of Daily and Subdaily Precipitation over South Korea, J. Climate, DOI:10.1175/2009JCLI2800.1, 22, 6741-6757  

Meteorological Satellite Research Lab.
Department of Atmospheric Science Konju National University
56, Gongjudaehak-ro, Gongju-si, Chungcheongnam-do, Korea
TEL : +82-41-850-8533 l E-mail : sms4@kongju.ac.kr

© k2s0o1d4e0s2i1g5n. All Rights Reserved